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1. Introduction

Entanglement entropy is a measure of quantum correlations in a bipartite decomposition

of a quantum system. If the total Hilbert space admits a decomposition H = HA⊗HB any

state ρ of the system defines a reduced density matrix, ρA, for observables that are ‘blind’

to, say HB , by simply tracing over the degrees of freedom in HB . Then, the entanglement

entropy is defined as the von Neumann entropy of this reduced density matrix:

SA|B = −Tr ρA log ρA , ρA = TrB ρ . (1.1)

For the case that ρ = |ψ〉〈ψ| is a pure state, there is the same amount of entanglement in

the two parts of the system: SA = SB.

More specifically, one can adapt the bipartite decomposition of the Hilbert space to a

certain basis of localized degrees of freedom in regions of space A and B, so that A ∪B is

the whole configuration space of the system. This particular avatar of the entanglement

entropy is also called geometric entropy and is a natural observable in quantum theories

with elementary degrees of freedom defined locally in space, such as lattice models and

their idealized long-distance descriptions as quantum field theories (QFT). In this paper,

we discuss geometric entropy but keep using loosely the terminology of ‘entanglement

entropy’.
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It can be argued on general grounds that geometric entropy in the vacuum state of a

weakly coupled quantum field theory satisfies the so-called area law, i.e. the entanglement

entropy is proportional to the volume of the boundary of the region under consideration,

measured in units of an appropriate ultraviolet (UV) cutoff [1].1 In d spatial dimensions

one finds

S[A] ∝ Neff
|∂A|
ε d−1

+ . . . , (1.2)

where |∂A| ≡ Vol(∂A) is the volume of the (d− 1)-dimensional boundary of A and Neff is

the effective number of on-shell degrees of freedom (flavour, spin, color). The dots in (1.2)

stand for subleading corrections in the short-distance expansion. Keeping the finite terms

in the continuum limit one can define renormalized versions of the entanglement entropy,

whose structure encodes properties related to physical energy thresholds like mass gaps [2],

confinement scales [3, 4], etc. Corrections to (1.2) are also important when considering

entanglement in non-vacuum sectors (see for example [5]), such as thermal states.

More recently entanglement entropy has emerged as a useful order parameter of dif-

ferent phases with nonlocal quantum order, particularly in the context of quantum phase

transitions at zero temperature (cf. [6]) and systems with so-called topological order (cf. [7]).

The area law (1.2) is strictly violated in the case of (1+ 1)-dimensional critical points.

In this case one finds a logarithmic behavior

S[A]d=1 =
c

3
log (|A|/ε) , (1.3)

where |A| = Vol(A) is the volume (length in this case) of the region A. The central charge

c ∼ Neff arises with a universal coefficient, even in the case of strongly coupled CFTs. The

area law does apply away from the critical point, i.e. for small correlation length ξ < |A|,
although the logarithmic cutoff dependence still persists,2

S[A]d=1 =
c

6
|∂A| log

ξ

ε
. (1.4)

Beyond this two-dimensional ‘anomalous’ behavior, one can associate the area law (1.2)

with local QFTs defined in terms of UV fixed points. This is even the case at strong

coupling, at least for those UV fixed points that can be studied via the AdS/CFT corre-

spondence [8]. See [9, 10] for a recent discussion of the generality of the area law in lattice

systems. On the other hand, a volume law of the entanglement entropy can be associated

to a violation of locality in the underlying theory. In order to argue this point at a heuristic

level, we can consider a nonlocal version of the Heisenberg’s antiferromagnetic spin chain,

H = J
∑

〈i,j〉

Si · Sj , (1.5)

where J > 0 and the sum runs over pairs of spins chosen uniformly at random, in such a

way that each spin belongs to only one pair. The ground state is then the direct product

1In fact it was this property that originally raised attention, because of its similitude to the entropy of

black holes.
2In d = 1, |∂A| stands for the number of boundary points.
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of singlets
1√
2

(| ↑i↓j〉 − | ↓i↑j〉) , (1.6)

for each pair of sites. Each singlet contributes log 2 to the entanglement entropy when the

spins sit on opposite sides of the boundary, and zero in all other cases. Hence, the entropy

is proportional to the number of singlets connecting the ‘inside’ and the ‘outside’. For the

model at hand, this is on average just the number of spins found inside A, i.e. S[A] ∼ |A|/ε,
a volume law.

In this paper we provide further evidence linking the extensivity of the entanglement

entropy with nonlocal behavior in the underlying theory. More specifically we study the

examples of Little String Theory (LST) and noncommutative Yang-Mills Theory (NCYM)

(see [11, 12] for reviews with a collection of early references on these subjects), using the

AdS/CFT ansatz [13] for the entanglement entropy in the holographic description of these

models. We find that the volume law

S[A] ∝ |A|
ε d

(1.7)

takes over the area law (1.2) when the characteristic size of A, defined as

ℓ ≡ 2
|A|
|∂A| (1.8)

falls well below the critical nonlocality length, ℓ ≪ ℓc. It is important to emphasize that

we are referring here to extensivity of the leading short-distance term in the entanglement

entropy, rather than the finite, cutoff-independent terms that can be identified as subleading

corrections to (1.2). These UV-finite terms are quite interesting and the subject of some

recent attention (cf. [13, 3, 2]) but will not be the main subject of this paper.

This paper is organized as follows. In section 2 we review the robustness of (1.2) for

UV fixed points in the AdS/CFT representation and provide some insight on this fact

by examining non-conformal examples of strongly coupled theories that can nevertheless

be considered as local. In section 3 we study the entanglement of nonlocal theories. In

subsection 3.1 we focus in the holographic description of LST and verify the emergence

of a volume law at short distances. In subsection 3.2 we do the same for the holographic

description of NCYM. In section 4 we discuss how Lorentz symmetry at the boundary

together with standard density of states are sufficient to guarantee the area law. We end

with some conclusions in section 5.

2. Holographic entanglement entropy and locality

The holographic ansatz for the calculation of entanglement entropy in theories with UV

fixed points [13] incorporates in a natural way the area law (1.2) (see also [14] for further

developments). Any such holographic model is defined by a background of string or M-

theory with asymptotic geometry AdSd+2×KdK
near the boundary, whereKdK

is a compact

Einstein manifold of dimension dK . Away from the boundary the geometry can be more

complex and background fields of various types may be excited, representing the breakdown

– 3 –
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of strict conformal symmetry by energy thresholds. We take the conformal boundary of

the AdSd+2 at infinity to be given by a flat (d+1)-dimensional Minkowski space R
d+1. Let

A denote a purely spatial, d-dimensional domain in R
d with a smooth boundary ∂A and

let A denote the minimal d-dimensional hypersurface in the bulk whose boundary on R
d+1

precisely coincides with ∂A. Then, the holographic ansatz for the entanglement entropy is

S[A] =
Vol(A )

4G
, (2.1)

where G is Newton’s constant and the induced volume form of the bulk is defined in the

Einstein frame. The hypersurface A is of codimension two on the complete bulk spacetime

of dimension d + 2 + dK , and furthermore completely wraps any compact internal cycle,

such as the Einstein manifold KdK
that is visible asymptotically. Hence, we can specify

further (2.1) by working with the Kaluza-Klein reduction to d + 2 dimensions and taking

G = Gd+2 as the induced Newton’s constant. Alternatively, in the particular examples of

this paper we will mostly deal with ten-dimensional backgrounds of type II string theory,

and we may as well work in string-frame variables with an explicit dilaton background:

S[A] =
1

32π6α′4

∫

Ā
d8σ e−2φ

√
G

(8)
ind , (2.2)

where G
(8)
ind denotes the determinant of the string-frame induced metric into Ā from the

bulk, and the dilaton φ is normalized so that the local value of the ten-dimensional Newton’s

constant is G10(φ) = 8π6α′4e2φ.

We can now give a simple heuristic argument that explains the universality of (1.2) in

any holographic background asymptotic to an AdSd+2 spacetime with metric

ds2 −→ R2 u2
(
−dt2 + dx2

d

)
+R2du

2

u2
, (2.3)

where R is the AdS radius of curvature. With this choice of coordinates, the holographic

variable u has dimensions of energy and directly represents a fiducial energy scale pa-

rameter in the dual CFT. The conformal symmetry of the dual CFT is characterized

by the scaling invariance of the bulk metric (2.3) under the combined transformation

(t, xd, u) → (λ t, λ xd, λ
−1u). A minimal d-surface A in AdSd+2 with boundary ∂A pene-

trates into the bulk down to a ‘turning point’ u ∼ u∗. Conformal symmetry implies that

the minimization problem has no intrinsic length scale (the overall AdS radius R drops out

of the variational problem). Therefore, using (1.8) as a measure of the size of A, we must

have u∗ ∼ 1/ℓ, provided u∗ still remains well within the region where the AdS metric (2.3)

is a good approximation. The minimal surface is locally a cylinder of the form ∂A× [uε,∞]

near the boundary, so that its volume gets a cutoff-dependent contribution of the form

Vol(A)UV ∼ Rd | ∂A |
∫ uε du

u
ud−1 ∼ Rd | ∂A | u

d−1
ε

d− 1
, (2.4)

which reproduces (1.2) with uε ∼ ε−1, since Neff ∼ Rd/Gd+2 according to the standard

AdS/CFT dictionary.
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Heuristically we can associate the locality of the theory to the occurrence of a UV/IR

relation of ‘Heisenberg’ type: ℓ(u∗) ∼ 1/u∗, since the radial coordinate u is interpreted as

an energy scale of the CFT. We will regard this relation as the ‘footprint’ of a local theory,

even in cases where the conformal symmetry is strongly violated.

An interesting example is provided by all the theories arising as holographic duals

of Dp-brane backgrounds in type II string theory, i.e. super Yang-Mills models in p + 1

dimensions, with gauge group SU(N), and (dimensionful) ’t Hooft coupling parameter

λ = g2
YMN (cf. [15]). The relevant string-frame metric is scaled at the near-horizon region

of the Dp-brane backgrounds:

ds2/λ
1

5−p ∝ u
7−p

5−p
(
−dt2 + dx 2

p

)
+ u

p−3
5−p

(
du2

u2
+ dΩ2

8−p

)
, (2.5)

in units α′ = 1, and the dilaton profile

e−2φ ∝ N2 λ
p−7
5−p u

(7−p)(3−p)
5−p , (2.6)

generalizing the conformal p = 3 case. We use the radial energy variable u introduced in [16]

and we neglect O(1) numerical constants for the purposes of this discussion. Furthermore,

it will be enough to estimate the entropy over trial cylinders capped at u = u∗, resulting

in an expression

S[A] ∼ N2 |A|λ
p−3
5−p u

9−p

5−p
∗ +

5 − p

4
N2 λ

p−3
5−p |∂A|

(
u

4
5−p
ε − u

4
5−p
∗

)
, (2.7)

which is extremal at the same Heisenberg-like UV/IR relation that featured in the confor-

mal case:

u∗ ∼
|∂A|
2|A| ≡

1

ℓ
. (2.8)

For p < 5 this extremal surface is actually a local minimum of the entropy functional (2.5)

and the resulting entanglement entropy scales as

S[ℓ] ∼ Neff(ε)
|∂A|
ε p−1

− CpNeff(ℓ)
|∂A|
ℓ p−1

, (2.9)

with Cp an O(1) numerical constant. We find a local ‘area law’ with a renormalized effective

number of degrees of freedom3

Neff(ε) = N2

(
λ

εp−3

) p−3
5−p

. (2.10)

This growing number of degrees of freedom with energy is the same that becomes exposed

when we excite the high-energy sector of the theory by thermal states. Here, a natural

definition is to measure the effective number of degrees of freedom in terms of the thermal

3A similar result can be obtained for models with a logarithmic deviation from a fixed point, such as

the gravity duals of ‘cascading gauge theories’ [17], where Neff shows a logarithmic growth at high energies

(cf. [3]).
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entropy density in units of the temperature of the system. In the bulk description, we

estimate the thermal entropy density s(T ) by that of black holes in the background (2.5),

according to the generalized AdS/CFT rules. The result is (cf. [15])

Neff(T ) ≡ s(T )

T p
∼ N2

(
λT p−3

)p−3
5−p . (2.11)

Hence, the degrees of freedom that are being measured by the entanglement entropy in the

UV are the same degrees of freedom that account for the entropy of a Yang-Mills plasma

at strong coupling.

The discussion of Dp-brane systems must be restricted to the regime where the effective

dimensionless ’t Hooft coupling λeff ∼ λT p−3 is very large, since this is the regime where

the geometry is appropriately weakly curved. At the same time, N must be large enough

so that the string loop expansion is under control. Beyond these thresholds one must use

a variety of dualities to map out the phases of the system (cf. for example [15, 18]).

More fundamental is the restriction to p < 5. At p = 5 the previous formulas clearly

break down, with Neff becoming formally infinite, suggesting that the dual theory has a

tower of field-theoretical excitations (a string theory). We will address this case in the

next section, as our first example of a nonlocal theory. For p > 5 there are no working

examples of holography (for example, the density of states of black holes leads to negative

specific heat). At the level of the previous formulas, the minimal hypersurface is pushed

all the way to the cutoff scale u∗ = uε, a first example of a volume law, albeit somewhat

pathological (see section 4 for a thorough discussion of these cases).

3. Nonlocal theories

In what follows, we turn to two examples of theories with an IR fixed point, i.e. a CFT limit

at low energies, but with a built-in scale of nonlocality. In the dual geometrical description,

we have backgrounds which approach AdS at low values of the energy variable, u, but differ

very significantly at the UV boundary.

We start with the gravity dual of the worldvolume theory of NS5-branes [19]. This

is related by an S-duality to the marginal case of D5-branes referred to in the previous

section. Since the holographic formula for the entanglement entropy can be written in

terms of the Einstein-frame metric, which is invariant under S-duality, the conclusions can

be transported between Neveu-Schwarz and Dirichlet type five-branes.

Therefore, our first example arises naturally as the borderline case from the point of

view of the arguments in the previous section. In particular, it corresponds to a formally

infinite number of field-theoretical degrees of freedom Neff = ∞. Not surprisingly, the dual

system turns out to be a string theory, albeit of a very exotic variety.

The second example is of a different nature. We examine noncommutative Yang-

Mills theories (NCYM) using their holographic description [20]. In this case, it is known

that the nonlocality is of a milder nature, since it does not involve an infinite tower of

field-theoretical degrees of freedom. Rather, it has to do with the violation of the micro-

causality rules enforced by Lorentz invariance. Accordingly, Neff plays a less decisive role

– 6 –
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Figure 1: The different regions of the bulk type IIA background. The local string coupling grows

towards smaller radii in the NS5 ‘tube’, becoming of O(1) at r ∼ rs = gsR. At lower radii the

system is well approximated by the uplifted solution to eleven dimensions, i.e. the smeared M̃5-

brane solution, which localizes below r ∼ rH = gsR/
√
N and flows to the AdS7 × S4 dual of the

(2, 0) CFT in six dimensions. In the type IIB case, the M̃5 phase is replaced by the near-horizon

D5-brane background, and the matching at r ∼ rH takes the system to a non-geometrical phase

described by weakly-coupled Yang-Mills theory.

in this case, but nevertheless we will confirm that the entanglement entropy still probes

the noncommutative nonlocality exposing a volume law at short distances.

3.1 Little string theory

Little String Theory (LST) is defined as the decoupled world-volume theory on a stack

of N NS5-branes, in the limit gs → 0 with fixed string slope α′. The effective length

scale of the theory is the combination R =
√
Nα′. For large values of the rank, N , we

have a dual geometrical description in terms of the near-horizon region of the NS5-branes

background [21]:

ds2 = −dt2 + dx2
5 +

R2

r2
dr2 +R2dΩ2

3 , eφ =
gsR

r
, (3.1)

where (t, x5) ∈ R
1+5 parametrizes the NS5-branes world-volume, i.e. the spacetime of the

LST. Changing variables to r = gsR exp(z/R) yields

ds2 = −dt2 + dx2
5 + dz2 +R2 dΩ2

3 , φ(z) = − z

R
, (3.2)

confirming that R is the unique length scale of the problem, with a geometry R
5+1×R×S3,

the product of a fixed-radius sphere and a flat cylinder, and a linear dilaton of slope 1/R

(cf. [19]). One can have type IIA and IIB NS5-branes giving rise to two different LSTs.

We will focus on the type IIA case which has a clear holographic dual.

The interpretation of the dual theory as a string theory is borne out by the consider-

ation of the density of states. According to the most basic of holography rules, we expect

the high-energy spectrum to be well approximated by black holes in the background (3.2),

which we will call ‘the tube’ in what follows. Black solutions with translational invariance

– 7 –
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on R
5 can be written down by the substitution dt2 → h(z, z0) dt

2 and dz2 → dz2/h(z, z0),

with the same dilaton profile and

h(z, z0) = 1 − exp (2(z0 − z)/R) . (3.3)

These black holes have a constant intrinsic temperature TH = (2πR)−1, independent of z0,

and moreover their Bekenstein-Hawking entropy yields a density of states of ‘Hagedorn’

type, betraying a stringy interpretation [22]:

Ω(E)BH = exp(E/TH) , E(z0) = NEH exp(2z0/R) . (3.4)

In this expression E(z0) is the energy of the LST state that corresponds to a black hole

with horizon at z0. EH is a threshold energy defined as

EH = 2π N3 V5 T
6
H , (3.5)

corresponding to the internal energy of a six-dimensional gas of Neff = N3 massless de-

grees of freedom at temperature TH . Hence, EH is the energy at which the LST matches

to its low-energy limit, the (2, 0) six-dimensional CFT. In the holographic description, this

matching occurs at z = zH = −R log
√
N , or r = rH = gsR/

√
N , and might be regarded as

the ‘infrared end’ of the tube. For energies below EH the density of states is well approxi-

mated by that of a six-dimensional CFT, with a holographic dual AdS7×S4 background of

eleven-dimensional supergravity. To be more precise (see for example [15]), one finds the

near-horizon limit of a stack of M5-branes localized in a circle, with metric

ds2 = H−1/3(−dt2 + dx2
5) +H2/3

(
dx2

11 + dr2 + r2dΩ2
3

)
, (3.6)

and profile function

H(r) =
∑

n∈Z

πNℓ3p

[r2 + (x11 − 2πR11n)2]3/2
, (3.7)

where the 11th Planck length and circle radius are given by ℓ3p = gsℓ
3
s, R11 = gsℓs, with

ℓs =
√
α′. Setting ρ2 = r2 + x2

11, this geometry is well approximated at ρ≪ R11 by

ds2 ≈ ρ

(πNℓ3p)
1
3

(
−dt2 + dx2

5

)
+

(πNℓ3p)
2
3

ρ2

(
dρ2 + ρ2 dΩ2

4

)
(3.8)

which adopts the canonical AdS7 × S4 form under the change of variables ρ = 4πNℓ3pu
2,

with RAdS = 2RS4 = 2ℓp(πN)1/3 and u the fiducial energy coordinate of the dual six-

dimensional CFT.

On the other hand, for rH ≪ r ≪ rs ∼ gsR the sum in (3.7) may be approximated by

the first term alone, and we get the metric of N M5-branes smeared over the 11th circle.

In turn, this is nothing but the 11th dimensional ‘uplift’ of the tube geometry:

ds211 = e4φ/3dx 2
11 + e−2φ/3ds 2

10 , (3.9)

with ds210 and φ given by (3.2). At z = 0 (or r = rs) the 11th circle acquires Planckian size,

corresponding to the local string coupling of the type IIA description becoming of order

– 8 –
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one. The thermodynamic functions of black holes in these spaces are independent of the

uplifting operation, when expressed in terms of physical energy, entropy and temperature

parameters. In practice, we can compute using (3.2) and extend analytically the results

down to z = zH , where one matches to the computations done with the metric (3.8). For

this reason, we shall refer to the whole z ≥ zH region as ‘the tube’ in what follows.

3.1.1 Entanglement entropy in the LST regime

Let us compute the entanglement entropy of a region of size ℓ in R
5, using (3.2) as bulk

geometry. The precise formulas obtained can be readily extended to the eleven-dimensional

intermediate regime in the region zH < z < 0, using the metric (3.9), just as was the case

for the thermodynamic functions. This results from the fact that the eleven-dimensional

bulk hypersurface wraps the x11 direction and the volume form of (3.9) satisfies

dVol11 = e−2φdx11 ∧ dVol10 , (3.10)

so that both eleven-dimensional and ten-dimensional formulae give the same basic integral

for the entropy as a function of the boundary data at large z.

For calculational convenience we will consider the particular case of the strip: A =

[−ℓ/2, ℓ/2] × R
4. By translational symmetry on the R

4 factor, we can work in terms on

the entropy density s[ℓ] with the volume of R4 factored out. We have a functional

s[ℓ] =
|S3|

32π6α′4g2
sR

2

∫ ℓ
2

− ℓ
2

dx r2

√

1 +
R2

r2

(
dr

dx

)2

, (3.11)

where |S3| = R3Ω3 is the volume of the 3-sphere. The bulk hypersurfaces are of the ‘straight

belt’ form, A = R
4 × γ[r∗], where γ[r∗] is a curve r(x) subtending an asymptotic length

ℓ on the boundary as x → ±ℓ/2 and turning at r∗ = r(0), defined by ∂xr(0) = 0. The

smooth extremizing hypersurface verifies then

ℓ(r∗) = 2Rr2∗

∫ ∞

r∗

dr

r
√
r4 − r4∗

=
π

2
R , (3.12)

a very peculiar result that was already obtained in ref. [13]. It shows that no smooth

extremal surface exists if the opening at the boundary is different from ℓ = ℓc ≡ πR/2.

Conversely, for ℓ = ℓc there are an infinite number of them, parametrized by the turning

point r∗. The entropy density at fixed r∗ is

s[r∗] =
Ω3R

2

16π6g2
sα

′4

∫ rε

r∗

r3dr√
r4 − r4∗

=
Ω3R

2

32π6g2
sα

′4

√
r4ε − r4∗ , (3.13)

where we have introduced rε as a regularization cutoff. This quantity is minimized for

r∗ = rε, suggesting that the minimal surface degenerates at the UV cutoff.

In order to further interpret this situation we shall consider the approximate minimiza-

tion problem for a restricted set of hypersurfaces with the form of a cylinder of base ∂A

– 9 –
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and extending down to z = z∗, in the coordinates of (3.2). At z = z∗ we cap the cylinder

with a copy of A. The contribution of the cylindrical part to the entropy is

Scyl =
1

32π6α′4

∫ zε

z∗

dz e2z/R |∂A| |S3| = C N4 T 5
H |∂A|R

(
e2zε/R − e2z∗/R

)
, (3.14)

where we have used the Hagedorn temperature TH = (2πR)−1 and defined the constant

C = Ω3/2π. The contribution of the endcap is

Scap =
1

32π6α′4
e2z∗/R |A| |S3| . (3.15)

Combining the two, we have

S[A] ∼ C N4 T 5
H R |∂A| e2zε/R + C N4 T 5

H e2z∗/R (2|A| −R |∂A|) . (3.16)

With the standard definition of the size of A, ℓ = 2|A|/|∂A| we see that the minimal

hypersurface within this restricted class degenerates to z∗ = −∞ for ℓ > R, or to z∗ = zε for

ℓ < R. In the marginal case ℓ = R there is a degeneracy with respect to z∗, corresponding

to the continuous degeneracy found in (3.12), with a slightly renormalized value of the

critical length, due to the non-smoothness of the class of hypersurfaces considered here.

Hence, we find that the entropy satisfies a volume law at short distances. We can

interpret the cutoff factor exp(2zε/R) in terms of LST physical quantities using eq. (3.4).

Namely, if Eε denotes the energy of the largest black hole that fits inside the cut-off tube,

then we have exp(2zε/R) = Eε/NEH , and we can finally write down the volume law in

the form

S[A] ∝ Neff(Eε)
|A|
ℓ5c

, for |A| < 1
2 ℓc |∂A| . (3.17)

with an effective cutoff length ℓc ∼ 1/TH ∼ R, and a running effective number of degrees

of freedom given by

Neff(Eε) = N3 Eε

EH
, (3.18)

Just as in the case of Dp-branes, this effective number of degrees of freedom corresponds

exactly to the effective number of thermally excited states counted by a black hole of

energy Eε. A very interesting aspect of (3.17) is the treatment of the ultraviolet cutoff.

The landmark of locality, i.e. Heisenberg-like UV/IR relation, breaks down and yet we

must implement a cutoff procedure. The only way to enforce such a cutoff is in terms of

the total energy of the system (see [23] for a thorough discussion of this phenomenon in

the context of LST thermodynamics).

3.1.2 Infrared matching

The behavior for ℓ > ℓc cannot be read off directly from (3.1), since we know that the

‘tube’ ends at zH = −R log
√
N and we have to match the geometry to the near-horizon

limit of a stack of M5-branes, the dual of a six-dimensional conformal field theory with

Neff = N3 degrees of freedom.

Hence for ℓ≫ ℓc the minimal surface is determined by the AdS geometry of the infrared

CFT and we expect an area law. In order to get a feeling of the transition from the volume

– 10 –
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Figure 2: Schematic plot of the UV/IR relation, as determined by the toy minimal hypersurfaces

of capped cylinders for a given value of ℓ, versus the location of the turning point in the bulk.

For ℓ > ℓH we have the standard ‘Heisenberg-type’ relation ℓ(u∗) ∼ 1/u∗, characteristic of local

theories. In the interval ℓc < ℓ < ℓH the minimal surface is stuck at u∗ = uH = TH (the IR end of

the tube). At ℓ = ℓc there is a degenerate set of minimal surfaces with turning points anywhere in

the tube, and finally for ℓ < ℓc the only minimal surface is the one set at the cutoff scale z = zε.

law for ℓ ≤ ℓc to the area law for ℓ ≫ ℓc, we can continue the analysis with the restricted

hypersurface, the capped cylinder, but now with expression (3.16) appropriately matched

to an AdS7-like space. To perform this matching, we consider the entropy contribution of

a ‘cap’ of boundary volume |A| at height uH = TH in the AdS space and demand that this

equals (3.15) at z∗ = zH . The corresponding entropy associated to a surface capped at

u = u∗ and extending up to the matching point u = uH = TH is

SAdS(u∗) = 2CN3 |A|u5
∗ + 2CN3 |∂A|

∫ uH

u∗

du

u
u4 . (3.19)

and the total entropy results from adding (3.14) to this expression, evaluated at z∗ = zH .

A local minimum occurs at u∗ = 2/5ℓ, provided u∗ ≤ TH . In other words, the minimal

hypersurface selects a standard local UV/IR correspondence for ℓ ≥ ℓH = 4πR/5. In the

remaining interval ℓc < ℓ < ℓH the minimum surface sits at the entrance of the tube, with

u∗ = TH and satisfying area law.4

We summarize the results of this section in figures 2 and 3. The strip entropy density

s[ℓ] = S[A]/|∂A| scales linearly with ℓ up to the critical length scale ℓc according to the

volume law (3.17)

s[ℓ] ∼ Neff(Eε)

ℓ 5
c

ℓ , ℓ < ℓc . (3.20)

4The UV-finite contribution in this case satisfies a volume law. It is the short-distance contribution with

explicit cutoff dependence that follows an area law. In keeping with our emphasis on the UV behavior in

this paper, we shall determine the area/volume scaling only in terms of the leading UV contribution to the

entanglement entropy.
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Figure 3: Schematic plot of the entropy density s[ℓ] = S[A]/|∂A| for the toy minimal hypersurfaces

of capped cylinders showing the local regime at ℓ ≥ ℓH , the nonlocal volume law at ℓ < ℓH and the

intermediate transient.

A short area-law plateau follows

s[ℓ] ∼ Neff(Eε)

ℓ 4
c

, for ℓc < ℓ < ℓH , (3.21)

and finally we get a very slow growth at large ℓ, corresponding to the infrared CFT:

s[ℓ] ∼ Neff(Eε)

ℓ4c

(
1 + b

(
1 − ℓ4H/ℓ

4
))

, for ℓ > ℓH , (3.22)

where b is a very small constant of O(EH/Eε). Notice that there is no regime in which

the cutoff-dependent terms adopt a field theoretical form. Instead, we find that ℓc takes

the role of effective UV cutoff in the theory. However, the local regime, with a Heisenberg

dispersion u∗ ∼ 1/ℓ, is associated with an area law, while the nonlocal region is associated

to a volume law. The sharp transition shown in figure 2 is expected to be an artifact of

our usage of non-smooth hypersurfaces, and should be replaced by a rapid crossover in the

exact treatment.

3.1.3 Deconstructed LST

We have seen that the entanglement entropy for strips with small widths (ℓ . R) is

associated with surfaces lying at the UV cutoff of LST’s dual geometry. We can ask what

would happen if the LST model is given a more standard UV completion. For example,

we may embed the LST theory into some UV fixed point admitting an AdS description in

the gravity regime. In such models, the LST behavior is reduced to some transient in the

energy variable or, in the geometric language, to some intermediate ‘tube-like’ geometry

interpolating between and infrared (IR) AdS and some UV AdS corresponding to the

asymptotic CFT at high energies. Embeddings of this type can be found in the literature,

using ideas of ‘deconstruction’ [24 – 26].

One particularly simple model that admits an explicit bulk geometrical description

was introduced in [26] and recently discussed at length in [23] (see this reference for more
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Figure 4: Schematic picture of the background profile in IIA deconstruction, showing the different

regions of interest in the vicinity of the LST regime.

details). In this set up the UV fixed point is given by a (2, 0) CFT in six dimensions

compactified on a circle. The merger with an intermediate LST-like background (3.2) is

achieved via two intermediate transients described in figure 4.

To be more precise, the R
5+1 world-volume of the NS5-brane is compactified down to

R
4+1 × S1 on a circle of length L, with a differential warping between the R

4+1 and S1

factors in such a way that the metric is asymptotic to that of N̂ D4-branes smeared over

the circle of length L, where N̂ ∼ N3/2L/gsR. The associated near-horizon metric

ds2 ≈ r

R

(
−dt2 + dx2

4

)
+
R

r

(
dw2 + dr2 + r2 dΩ2

3

)
, eφ ≈ gs (3.23)

matches the tube (3.2) at r ∼ rθ = R. The w coordinate parametrizes the circle of size

L. At even larger radii, of order r ∼ rΛ = L, the smeared D4-branes are revealed as an

infrared approximation to the metric of N̂ localized D4-branes, a system studied in the

previous section of this paper. To achieve the matching one proceeds as in the example

around eq. (3.7), defining now ρ2 = w2 + r2 as the appropriate radial variable for the

localized D4-branes throat.

Finally, the D4-branes develop strong coupling and match by an 11th dimensional uplift

to an AdS7 × S4 background similar to the one appearing in the IR, but associated to a

CFT with N̂3 degrees of freedom in the UV.

Let us consider a strip of the form [−ℓ/2, ℓ/2] × S1
L ×R

3 and define the entanglement

entropy density s[ℓ] by factoring out the volume of the R
3 factor. For turning points in the

regime described by (3.23), corresponding to rθ ≪ r∗ ≪ rΛ, we have an entropy functional

s[ℓ] =
LΩ3

16π6α′4g2
s

∫ ℓ
2

− ℓ
2

dx r3

√

1 +
R2

r2

(
dr

dx

)2

. (3.24)

The smooth extremizing hypersurface then fixes the strip length to a constant value ℓ(r∗) =
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Figure 5: Schematic plot of ℓ as a function of r∗, ρ∗ for the deconstructed LST background. In

the tube region rH < r < rθ one has a constant behavior of ℓ as well as in rθ < r < rΛ, whereas for

the corresponding regions of ℓ > ℓc and ℓ < ℓθ one has ℓ ∼ ρ
−

1

2

∗ .

ℓθ, independent of r∗,

ℓ(r∗) = 2r3∗R

∫ ∞

r∗

dr

r
√
r6 − r6∗

=
π

3
R , (3.25)

just as in the case of the LST tube. The critical length ℓθ is somewhat smaller than

ℓc = πR/2, but with the same order of magnitude. In this situation, the volume of the

bulk hypersurfaces at ℓ = ℓθ will be approximately minimized by the one with the largest

possible value of r∗, i.e. r∗ ∼ rΛ, the point where the metric is matched to that of localized

D4-branes. For ℓ < ℓθ the turning point will occur inside the standard D4-brane metric,

yielding standard Heisenberg dispersion ℓ ∼ 1/u∗, for an appropriate energy variable in the

D4-brane throat. The resulting entropy will show the scaling (2.9) with the replacements

p → 4, N → N̂ and λ → gsN̂
√
α′. At even lower values of ℓ we enter the six-dimensional

CFT scaling. The qualitative behavior of the dispersion relation is shown in figure 5.

At any rate, if the ultraviolet cutoff is taken all the way to the region dominated by

the UV fixed point, the leading short-distance behavior of the entropy is guaranteed to be

given by the six-dimensional area law

s[ℓ] ∼ N̂3 L

ε4
, (3.26)

with finite-ℓ corrections that will be sensitive to the different thresholds visible in the

UV/IR relation. The previous volume law is shifted to a volume law of just the UV-finite

part of the entanglement entropy.

3.2 Noncommutative Yang-Mills

Compared to the example of LST, noncommutative theories epitomize a milder notion

of non-locality. Consider a maximally supersymmetric SU(N) super Yang-Mills theory

quantized on a spacetime R
2
θ ×R

1+1, where R
2
θ is the noncommutative plane defined by a

– 14 –



J
H
E
P
0
4
(
2
0
0
8
)
0
9
6

Moyal algebra [x, y] = iθ. Perturbative excitations behave as gluons with a rigid transversal

length L(p) = θpθ, where pθ is the projection of the momentum onto the noncommutative

plane. The presence of these ‘rigid rod’ degrees of freedom introduces a basic nonlocality

in the theory by the corresponding violation of Lorentz invariance, but it does not strictly

affect the number of local degrees of freedom.

While propagation of such extended gluons is not affected by the noncommutative

deformation, nontrivial θ dependence only arises in the interacting theory at the level of

nonplanar corrections in the 1/N expansion. In particular, the density of states at large

N is not sensitive to the noncommutative deformation.

The dual holographic description of these theories was introduced in refs. [20], using

the basic scaling of [8] in the string theory set up of ref. [27]. The metric is

ds2/R2 = u2
(
−dt2 + dz2 + f(u)(dx2 + dy2)

)
+
du2

u2
+ dΩ2

5 , (3.27)

with a dilaton and Neveu-Schwarz B-field:

e2φ = g2
sf(u) , Bxy =

1

θ
(1 − f(u)) , (3.28)

where gs is the asymptotic string coupling in the infrared region u→ 0, related to the Yang-

Mills coupling constant by g2
YM = 2πgs. The curvature of the AdS region is controlled by

the usual expression R4 = 4πgsNα
′2, and the profile function

f(u) =
1

1 + (aθu)4
, aθ =

√
θ (4πgsN)1/4 = (2λ)1/4

√
θ , (3.29)

determines the θ-dependence through the effective length scale aθ ∝
√
θ, renormalized by a

fractional power of the ’t Hooft coupling, a common occurrence in AdS holographic duals.

In this form, the model is clearly asymptotic to the standard AdS5 × S5 background at

small values of u, which gives the energy coordinate of the infrared fixed point.

There is a further subtlety regarding the proper interpretation of this model which is

of some relevance for our discussion below. The induced metric on the boundary, obtained

as usual removing the u2R2 factor at fixed u, has in this case an anisotropy caused by the

presence of the f(u) factor in the noncommutative plane coordinated by (x, y). It is impor-

tant however to realize that the physically relevant metric to which the energy-momentum

tensor of the noncommutative theory couples is the so-called ‘open-string metric’, defined

in ref. [27] as

Gij = gij − (α′
eff)2

(
B

1

g
B

)

ij

, (3.30)

where α′
eff is the effective string slope parameter and gij is the metric entering the string

sigma-model. In the case of the metric induced at fixed u by (3.27) we have (restricting to

the noncommutative plane) gij = fδij , Bij = θ−1(1− f)δij and the effective string tension

can be obtained by dropping a fundamental string at fixed u. Its mass per unit length is

1

2πα′
eff

=
R2u2

2πα′
,
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which determines α′
eff . Using a8

θ = θ2R4/α′4 from their definitions, we finally obtain

Gij = δij , i.e. the physical metric of the noncommutative theory is the standard Euclidean

metric, despite the deformation induced by the holographic background [28] (for a recent

example where this subtlety makes all the difference, see [29]). This means that, when

considering the areas and volumes of a prescribed region, we will define |A| and |∂A| as

coordinate areas and volumes, using the standard Euclidean metric on R×R
2
θ, rather than

the induced metric as it comes from (3.27). Conversely, the bulk volume that enters the

holographic ansatz of the entanglement entropy will be computed in the bulk metric.

3.2.1 The computation

Let us consider the strip of coordinate width ℓ as entanglement region, and define s[ℓ]

as the entropy density resulting from factorizing out the longitudinal volume of R2. The

behavior of the entanglement entropy is very sensitive to the orientation of this R
2 plane

of the strip, since the system has lost Lorentz invariance by the θ deformation. It is easy

to see that the entropy functional is θ-independent when the strip plane is parallel to the

noncommutative plane R
2
θ. Hence, the results coincide with those of the standard CFT in

that case. In all other possible orientations, one finds a nontrivial result. We shall consider

as representative the orthogonal orientation, in which the strip plane is orthogonal to R
2
θ.

Without loss of generality we can align the strip along the y direction, so that ℓ is the

coordinate extent of the strip in the x direction. Then, the entropy functional takes the

form

s[ℓ] =
|S5|R8

32π6α′4g2
s

∫ ℓ/2

−ℓ/2
dxu3

√
1 +

(du/dx)2

u4f(u)
, (3.31)

for a straight belt defined by a function u(x) with turning point at u∗ = u(0), determined

by the equation

ℓ(u∗) = 2u3
∗

∫ ∞

u∗

du

u2
√
f(u)(u6 − u6

∗)
=

2

u∗

∫ ∞

1

ds
√

1 + (aθu∗)4s4

s2
√
s6 − 1

. (3.32)

This function is shown in figure 6. It has a minimum at ℓ = ℓmin ∼ aθ and implies that

there are no extremal, smooth hypersurfaces for ℓ < ℓmin. Conversely, for ℓ > ℓmin there are

two extremal hypersurfaces of which only the one with lower value of u∗ is a local minimum

of the entropy functional. In the deep infrared u∗aθ ≪ 1 we can approximate (3.32) by the

usual local UV/IR relation,

ℓ(u∗) ≈
c0
u∗

, c0 = 2

∫ ∞

1

ds

s2
√
s6 − 1

= 2
√
π

Γ
(

2
3

)

Γ
(

1
6

) . (3.33)

On the other hand, in the deep noncommutative regime u∗aθ ≫ 1 we have an exotic

dispersion relation for the unstable extremal surfaces.

ℓ(u∗) ≈ c∞ a2
θ u∗ , c∞ = 2

∫ ∞

1

ds√
s6 − 1

=

√
π

3

Γ
(

1
3

)

Γ
(

5
6

) . (3.34)
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Figure 6: Numerical plot of the UV/IR relation in the noncommutative theory. Stable hypersur-

faces (blue continuous line) disperse as ℓ ∼ 1/u∗ and unstable ones (red dotted line) disperse as

ℓ ∼ u∗. The hypersurfaces with ℓ < ℓc in the blue dashed line are metastable. Notice that there

are no extremal smooth 3-surfaces with ℓ < ℓmin ∼ aθ.

Figure 7: Numerical plot of the entanglement entropy for the smooth extremal hypersurfaces. The

blue dashed line represents the metastable solutions whereas the red dashed line gives the entropy

of the unstable solutions.

The entropy functional evaluated at the stable solution

s[ℓ] = N2 Ω5

π4

∫ uε

u∗

duu4

√
f(u)(u6 − u6

∗)
(3.35)
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Figure 8: Numerical plot showing how the smooth stable 3-surface ceases to be the absolute

minimum of induced volume at ℓ = ℓc. It is replaced by the extensive one at the cutoff scale for

ℓ < ℓc (brown dashed-dotted line).

has a leading short-distance behavior

s[ℓ] ∼ N2 a2
θ u

4
ε , (3.36)

with the ℓ-dependent contribution being of order −N2/ℓ2 and thus small in the limit of

very large uε. We can compare this to the entropy of the degenerate surface sitting at the

cutoff scale, u = uε, which scales extensively and is independent of f(u),

s[ℓ]UV ∼ N2ℓ u3
ε . (3.37)

We see that (3.37) is smaller than (3.36) provided ℓ < ℓc with

ℓc ∼ uεa
2
θ ∼ a2

θ

ε
∼ θ

ε

√
λ , (3.38)

where λ = g2
YMN is the ’t Hooft coupling of the IR fixed point and we have defined an

effective cutoff length ε ∼ uε (see figure 4). That uε is the standard energy coordinate even

for uεaθ ≫ 1 is guaranteed by the known fact that the Hawking temperature of a black hole

in the noncommutative bulk geometry (3.27) is independent of θ, as well as the Bekenstein-

Hawking entropy. Hence, the u-coordinate of the horizon measures the temperature of the

plasma phase of the NCYM theory, at least in the planar approximation.

Therefore, we can summarize the situation as follows. For large values of the strip’s

width, ℓ≫ ℓc, the short-distance contribution to the entanglement entropy shows an area

law of the form

S[A] ∝ Neff
|∂A|
ε2

, Neff = N2

(
ℓc
aθ

)2

, (3.39)
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in particular, we see a renormalized value of the effective number of degrees of freedom.

In this respect, the noncommutative theory differs markedly from its commutative coun-

terpart. It should be stressed that only the cutoff-dependent contribution sees a deformed

number of degrees of freedom as in (3.39), since the finite ℓ-dependent part has the standard

scaling

C[ℓ] ≡ ℓ
d

dℓ
s[ℓ] ∼ N2

ℓ2
, for ℓ≫ ℓc .

This behavior changes abruptly at ℓ ∼ ℓc, and we switch to a volume law, characteristic of

the nonlocal regime

S[A] ∝ N2 |A|
ε3

, (3.40)

where this time Neff is given by the standard IR value, N2.

Finally, let us briefly point out that theories with noncommutative time can be for-

mally defined, with [t, z] = iθe. Even though these models are plagued with a variety of

consistency problems [30] one can still carry out the analysis of the entanglement entropy

at a formal level, along the preceding lines. The holographic dual has the same structure

as (3.27) with the replacement of the ‘magnetic’ (x, y) plane by the ‘electric’ (t, z) plane

in the metric, dilaton and B-field profiles. The (x, y) warping f(u) is substituted by (t, z)

warping fe(u), obtained by the replacement θ → θe and aθ → ae.

Repeating the previous analysis for this particular background we find that the local

UV/IR relation ℓu∗ ∼ 1 holds in order of magnitude for the case that the strip length ℓ

extends along the x or y directions, even for ℓae ≪ 1. Accordingly, the area law holds

for any ℓ > ε. The short-distance scaling of the entanglement entropy still reveals an

exotic number of degrees of freedom Neff ∼ N2(ae/ε)
2, just as in the case of ‘magnetic’

noncommutativity. For the case that the strip length ℓ extends along the z axis, one finds

a critical length ℓc ∼ a2
e/ε for the transition to a volume law, just as the magnetic case.

Now however the effective number of degrees of freedom jumps from Neff ∼ N2(ℓc/ae)
4 at

large ℓ to Neff ∼ N2(ℓc/ae)
2 at ℓ < ℓc.

3.2.2 Interpretation of UV/IR mixing

A key consequence of our analysis is the occurrence of very strong UV/IR mixing effects

in the noncommutative theory. The naive scale of nonlocality is
√
θ, or rather its strong-

coupling version aθ. However, we see that the effects on the entanglement entropy, i.e. the

onset of the volume law, take place at a length scale ℓc ∼ a2
θ/ε, larger than the naive one

by a factor of aθ/ε.

Continuing this result to the weakly coupled theory, it would mean that the effective

scale of nonlocality is θ/ε rather than
√
θ. In fact, this turns out to have a rather natural

explanation. As reviewed in the introduction to this subsection, the elementary excitations

of NCYM in perturbation theory are a sort of extended gluons, which behave as rigid

rods of transverse size Leff(p) ∼ θpθ, with pθ the projection of the momentum onto the

noncommutative plane. Since the maximum momentum is 1/ε, we find that the maximum

size of a gluon is a rod of length θ/ε in the R
2
θ plane. This reproduces the expected
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effective scale of nonlocality, and also explains why a strip which is cut parallel to the

noncommutative plane is insensitive to this ‘growth’ of the gluons.

4. Epilogue: Lorentz symmetry, entanglement entropy and the density of

states

The two examples studied in this paper might induce in the reader the impression that

models with UV volume law are not that difficult to construct. In fact, we would like

to argue that these two models, LST and NCYM, are quite special. We have already

emphasized that the noncommutative model owes its volume law to the occurrence of rigid

extended objects, particularly breaking Lorentz symmetry. In this section we point out

that keeping Lorentz symmetry in the boundary theory severely restricts the possibilities.

More specifically, we will consider bulk systems with Einstein-frame metric of the form

ds2/R2 = λ(u)2(−dt2 + dx2
d ) +

du2

µ(u)2
, (4.1)

where the warp factors λ(u), µ(u) give the most general metric compatible with Lorentz

symmetry on the R
d+1 boundary theory. We can also assume that λ(u) > 0, µ(u) > 0 and

that λ(u), µ(u) → u as u→ 0, i.e. we have an IR fixed point with Neff ∼ Rd/Gd+2 effective

degrees of freedom.5 This family of metrics includes LST, all near-horizon brane met-

rics and flat space as particular cases, but excludes noncommutative models with explicit

violation of Lorentz symmetry.

We are interested in the behavior of minimal hypersurfaces at very large u. Using

again the simple ansatz of a capped cylinder of base ∂A reaching down to u = um, we have

S(um) ∼ Neff |A|λ(um)d +Neff |∂A|
∫ uε

um

du

µ(u)
λ(u)d−1 , (4.2)

where the first term arises from the cap of geometry |A| located at u = um and the second

term is the volume of the cylinder reaching out from um up to the cutoff uε. The turning

point u∗ is obtained by extremizing this expression with respect to um, leading to

ℓ(u∗) ∼
1

µ(u∗)λ′(u∗)
, (4.3)

as the modified UV/IR relation, where λ′(u) is the derivative of the warp factor with

respect to u. Thus we recover the standard Heisenberg-like relation for the conformal case

λ(u) ∼ µ(u) ∼ u.

We can define a theory with volume law in the UV by requiring that the expression (4.2)

is minimal at the UV cutoff, i.e. one does not decrease the total volume by lowering the

position of the cap in the bulk spacetime. This condition is

µ(uε)λ
′(uε) <

c

ℓ
, (4.4)

5In fact, we can relax this condition and keep some thresholds at low u related to nontrivial IR phenom-

ena, such as mass gaps and confinement. Since we are emphasizing here the UV behavior, those details will

not affect our analysis.
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where c is a constant of O(1) and we evaluate the profile factors at the UV cutoff uε to

indicate that we are interested in the deep UV behavior of the metric.

Now we can relate this behavior to the density of states of the theory, as defined by

the Bekenstein-Hawking entropy of black holes with planar horizon. The corresponding

black metrics take the form

ds2/R2 = λ(u)2(−h(u)dt2 + dx2
d ) +

du2

µ(u)2h(u)
, (4.5)

with h(u) a Schwarzschild-like factor with a first-order zero at the location of the hori-

zon, h(u0) = 0, with h′(u0) ∼ 1/u0. Using standard methods we get for the Hawking

temperature and Bekenstein-Hawking entropy density over R
d:

T (u0) =
λ(u0)µ(u0)

b u0
, s(u0)bh ∼ Neff λ(u0)

d , (4.6)

where b is a positive constant of O(1). With the standard definition of the running effective

number of degrees of freedom (species degeneracy) we have

Neff(u0) ≡
s(u0)

T d
∝ Neff

(
u0

µ(u0)

)d

. (4.7)

We will say that a model is ‘well behaved’ when the running species degeneracy does not

decrease as we access higher energies, i.e. dNeff/du0 ≥ 0. A further condition satisfied

by a ‘decent’ holographic dual is that the specific heat should be positive, i.e. dT/du0 =

T ′(u0) ≥ 0. Taking now the derivative of the temperature function we derive the expression

µ(u0)λ
′(u0) = u0 b T

′(u0) + b T (u0) − λ(u0)µ
′(u0) ,

and the last two terms can be related to the derivative of the running effective number of

degrees of freedom, so that we can finally write

µ(uε)λ
′(uε) = b uε T

′(uε) + b d T (uε)uε
d logNeff

du

∣∣∣
u=uε

. (4.8)

Hence, we see that a positive specific heat T ′(uε) > 0 in the UV, combined with a non-

decreasing species degeneracy essentially guarantees that the inequality (4.4) will be vi-

olated and the entanglement entropy will not satisfy a volume law in the UV. In other

words, we will see an area law, because the UV asymptotics will be dominated by the

cylinder rather than the cap.

Field-theoretical densities of states have a powerlike growth of T (u0), which is enough

to ensure area law, even for an asymptotically constant Neff(u0). The effect of Neff in the

argument is much milder, since any powerlike growth of Neff(u0) only yields a constant

d logNeff/d log u and a corresponding constant term on the right hand side of (4.8).

Conversely, models with Lorentz invariance on the boundary and volume law must have

a ‘pathological’ density of states, either because the specific heat is negative, or because the

species degeneracy decreases at high energies. For example, we may consider the case of flat

space, with λ(u) = µ(u) = 1/R, whose holographic dual, if formally defined, is expected
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to be a nonlocal theory [31]. Conforming to these expectations, when one calculates the

entanglement entropy one finds it satisfies the volume law. And indeed, the density of

states of black holes has an effective temperature T (u0) ∼ (R2u0)
−1 with negative specific

heat. The formal dimensional reduction of a higher-dimensional flat space behaves in a

similar fashion, as well as the Dp-brane metrics with p ≥ 5: they all present a volume

law for the entanglement entropy and again both have negative specific heat and shrinking

number of species (in verifying these examples, it is important to notice that (4.1) is written

in Einstein-frame conventions after dimensional reduction to d+ 2 dimensions).

It is interesting to notice that the LST model is precisely a marginal case from the

point of view of this analysis, since the effective temperature is constant T = TH in the

‘LST plateau’. On the other hand, the NCYM model evades the discussion in this section,

due to the violation of Lorentz symmetry, since the directional distortion of the bulk metric

cancels out when computing both the Hawking temperature and the Bekenstein-Hawking

entropy of black holes.

5. Conclusions

In this paper we have strengthened the basic intuition that a certain degree of nonlocality

tends to introduce a volume law in the scaling of the entanglement entropy, as opposed to

the more standard area law, characteristic of local QFT. We have done this at very strong

coupling, using the holographic definition of entanglement entropy, and testing these ideas

in the case of two models with an available geometrical description, namely Little String

Theory and noncommutative super Yang-Mills theory.

Our results are also interesting probes into the peculiar workings of holography in

these nonlocal theories. Both models have standard IR fixed points with an AdS/CFT

description and an intrinsic length of nonlocality. We find in both cases that the volume-

law entanglement entropy measures the effective number of degrees of freedom at high

energies, weighed by the same number of degrees of freedom that get exposed by highly

excited thermal states.

Both models pose interesting challenges beyond the leading classical approximation in

the bulk description. In the case of LST, it has been emphasized recently that string loop

corrections tend to destabilize the Hagedorn density of states, unless maximal energy cutoff

is in place [23]. In the case of NCYM it is well known that non-planar corrections bring on

the UV/IR effects into full strength [32]. Since one of the most important open problems in

the holographic theory of entanglement entropy is the generalization beyond the classical

approximation, these models will represent very stringent checks on any proposal in this

direction.

Finally, we have seen that the two models studied in this paper have a rather pecu-

liar status. One can argue that the combination of Lorentz symmetry plus a more or less

standard density of states at high energy is sufficient to guarantee an area law in the UV

contribution to the entanglement entropy. The LST model arises as a marginal, excep-

tional case in this analysis, whereas the nocommutative model evades the argument by the

violation of Lorentz symmetry. Not surprisingly, extending this treatment to the case of
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the holographic dual of strings in flat space, suspected to be a highly non-local theory,

one finds a volume law of the entanglement entropy, thus endorsing the interpretation of

volume-law scaling as a criterion of non-locality.
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